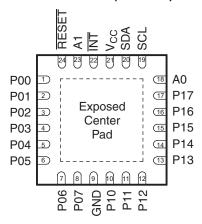

Low Voltage 16-Bit I²C and SMBus Low-Power I/O Expander with Interrupt Output, RESET, and Configuration Registers

Check for Samples: TCA9539-Q1

FEATURES


- Low Standby-Current Consumption of 3 μA Max
- I²C to Parallel Port Expander
- Open-Drain Active-Low Interrupt Output
- Active-Low Reset Input
- 5-V Tolerant I/O Ports
- Compatible With Most Microcontrollers
- 400-kHz Fast I²C Bus
- Polarity Inversion Register

PW PACKAGE(TOP VIEW)

- Address by Two Hardware Address Pins for Use of up to Four Devices
- Latched Outputs With High-Current Drive Capability for Directly Driving LEDs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)
 - 200-V Machine Model (A115-A)

RTW PACKAGE(TOP VIEW)

The exposed center pad, if used, must be connected as a secondary ground or left electrically open

SCPS254 – JANUARY 2014 www.ti.com

DESCRIPTION

This 16-bit I/O expander for the two-line bidirectional bus (I^2C) is designed for 1.65-V to 5.5-V V_{CC} operation. It provides general-purpose remote I/O expansion for most microcontroller families via the I^2C interface [serial clock (SCL), serial data (SDA)].

The TCA9539-Q1 consists of two 8-bit Configuration (input or output selection), Input Port, Output Port, and Polarity Inversion (active-high or active-low operation) registers. At power-on, the I/Os are configured as inputs. The system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or output is kept in the corresponding Input or output register. The polarity of the Input Port register can be inverted with the Polarity Inversion register. All registers can be read by the system master.

The system master can reset the TCA9539-Q1 in the event of a time-out or other improper operation by asserting a low in the RESET input. The power-on reset puts the registers in their default state and initializes the $I^2C/SMBus$ state machine. Asserting RESET causes the same reset/initialization to occur without depowering the part.

The TCA9539-Q1 open-drain interrupt (INT) output is activated when any input state differs from its corresponding Input Port register state and is used to indicate to the system master that an input state has changed.

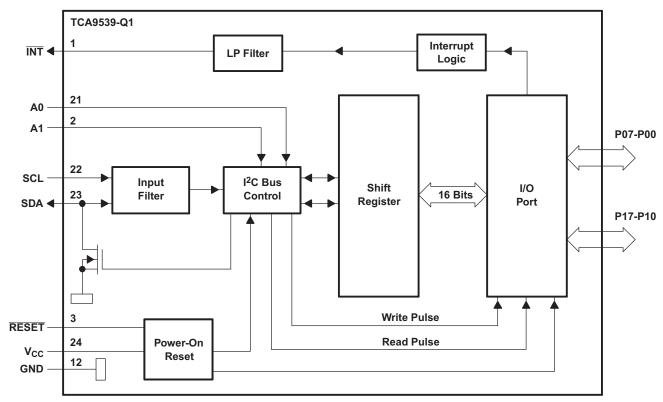
INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C bus. Thus, the TCA9539-Q1 can remain a simple slave device.

The device outputs (latched) have high-current drive capability for directly driving LEDs. The device has low current consumption.

The TCA9539-Q1 is identical to the PCA9555, except for the removal of the internal I/O pullup resistor, which greatly reduces power consumption when the I/Os are held low, replacement of A2 with RESET, and a different address range.

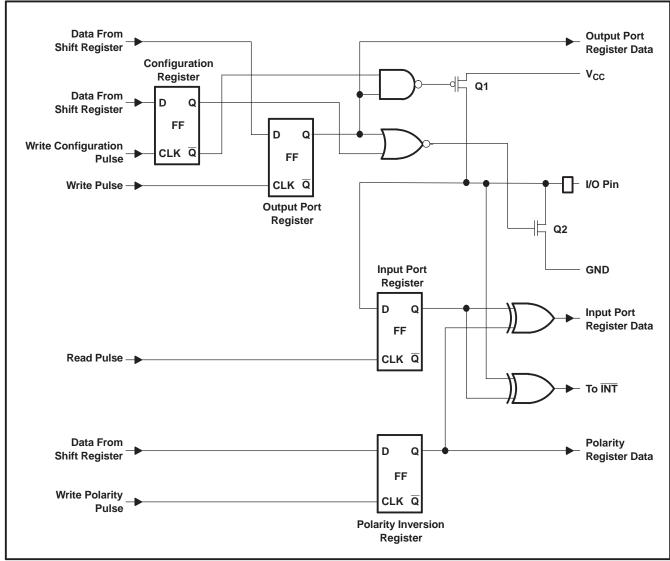
Two hardware pins (A0 and A1) are used to program and vary the fixed I²C address and allow up to four devices to share the same I²C bus or SMBus.

PRODUCT PREVIEW



Terminal Functions

	NO.			eninai Functions
TSSOP (PW)	QFN (RTW)	BGA (ZQS)	NAME	DESCRIPTION
1	22	А3	ĪNT	Interrupt output. Connect to V _{CC} through a pullup resistor.
2	23	В3	A1	Address input. Connect directly to V _{CC} or ground.
3	24	A2	RESET	Active-low reset input. Connect to V_{CC} through a pullup resistor if no active connection is used.
4	1	A1	P00	P-port input/output. Push-pull design structure. At power on, P00 is configured as an input.
5	2	C3	P01	P-port input/output. Push-pull design structure. At power on, P01 is configured as an input.
6	3	B1	P02	P-port input/output. Push-pull design structure. At power on, P02 is configured as an input.
7	4	C1	P03	P-port input/output. Push-pull design structure. At power on, P03 is configured as an input.
8	5	C2	P04	P-port input/output. Push-pull design structure. At power on, P04 is configured as an input.
9	6	D1	P05	P-port input/output. Push-pull design structure. At power on, P05 is configured as an input.
10	7	E1	P06	P-port input/output. Push-pull design structure. At power on, P06 is configured as an input.
11	8	D2	P07	P-port input/output. Push-pull design structure. At power on, P07 is configured as an input.
12	9	E2	GND	Ground
13	10	E3	P10	P-port input/output. Push-pull design structure. At power on, P10 is configured as an input.
14	11	E4	P11	P-port input/output. Push-pull design structure. At power on, P11 is configured as an input.
15	12	D3	P12	P-port input/output. Push-pull design structure. At power on, P12 is configured as an input.
16	13	E5	P13	P-port input/output. Push-pull design structure. At power on, P13 is configured as an input.
17	14	D4	P14	P-port input/output. Push-pull design structure. At power on, P14 is configured as an input.
18	15	D5	P15	P-port input/output. Push-pull design structure. At power on, P15 is configured as an input.
19	16	C5	P16	P-port input/output. Push-pull design structure. At power on, P16 is configured as an input.
20	17	C4	P17	P-port input/output. Push-pull design structure. At power on, P17 is configured as an input.
21	18	B5	A0	Address input. Connect directly to V _{CC} or ground.
22	19	A5	SCL	Serial clock bus. Connect to V _{CC} through a pullup resistor.
23	20	A4	SDA	Serial data bus. Connect to V _{CC} through a pullup resistor.
24	21	B4	V _{CC}	Supply voltage


Logic Diagram (Positive Logic)

- A. Pin numbers shown are for PW package.
- B. All I/Os are set to inputs at reset.

Figure 1. Simplified Schematic of P-Port I/Os

(1) At power-on reset, all registers return to default values.

I/O Port

When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input. The input voltage may be raised above V_{CC} to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the Output Port register. In this case, there are low-impedance paths between the I/O pin and either V_{CC} or GND. The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.

I²C Interface

The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

 I^2C communication with this device is initiated by a master sending a Start condition, a high-to-low transition on the SDA input/output while the SCL input is high (see Figure 2). After the Start condition, the device address byte is sent, MSB first, including the data direction bit (R/W). This device does not respond to the general call address.

After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output during the high of the ACK-related clock pulse. The address inputs (A0 and A1) of the slave device must not be changed between the Start and Stop conditions.

On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (Start or Stop) (see Figure 3).

A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see Figure 2).

Any number of data bytes can be transferred from the transmitter to the receiver between the Start and the Stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 4). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to ensure proper operation.

A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a Stop condition.

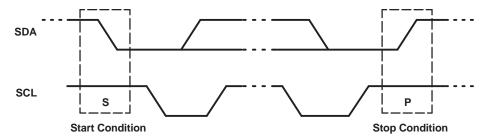


Figure 2. Definition of Start and Stop Conditions

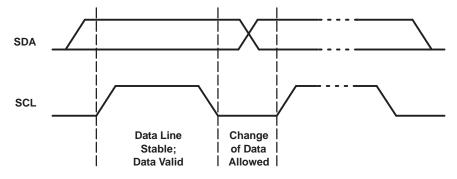


Figure 3. Bit Transfer

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

INSTRUMENTS

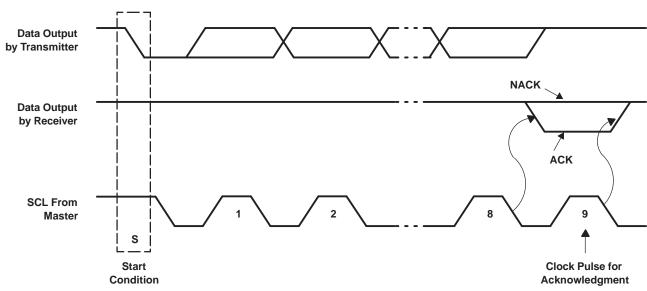


Figure 4. Acknowledgment on I²C Bus

Table 1. Interface Definition

ВҮТЕ	BIT									
DIIC	7 (MSB)	6	5	4	3	2	1	0 (LSB)		
I ² C slave address	Н	Н	Н	L	Н	A1	A0	R/W		
P0x I/O data bus	P07	P06	P05	P04	P03	P02	P01	P00		
P1x I/O data bus	P17	P16	P15	P14	P13	P12	P11	P10		

Device Address

Figure 5 shows the address byte of the TCA9539-Q1.

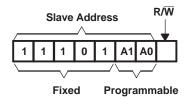


Figure 5. TCA9539-Q1 Address

Table 2. Address Reference

INP	UTS	I ² C BUS SLAVE ADDRESS				
A1	A0	I C BUS SLAVE ADDRESS				
L	L	116 (decimal), 74 (hexadecimal)				
L	Н	117 (decimal), 75 (hexadecimal)				
Н	L	118 (decimal), 76 (hexadecimal)				
Н	Н	119 (decimal), 77 (hexadecimal)				

The last bit of the slave address defines the operation (read or write) to be performed. A high (1) selects a read operation, while a low (0) selects a write operation.

Control Register and Command Byte

Following the successful acknowledgment of the address byte, the bus master sends a command byte that is stored in the control register in the TCA9539-Q1. Three bits of this data byte state the operation (read or write) and the internal register (input, output, Polarity Inversion or Configuration) that will be affected. This register can be written or read through the I²C bus. The command byte is sent only during a write transmission.

Once a command byte has been sent, the register that was addressed continues to be accessed by reads until a new command byte has been sent.

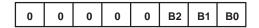


Figure 6. Control Register Bits

Table 3. Command Byte

CONTRO	CONTROL REGISTER BITS		COMMAND	REGISTER	PROTOCOL	POWER-UP
B2	B1	В0	BYTE (HEX)	REGISTER	PROTOCOL	DEFAULT
0	0	0	0x00	Input Port 0	Read byte	xxxx xxxx
0	0	1	0x01	Input Port 1	Read byte	XXXX XXXX
0	1	0	0x02	Output Port 0	Read/write byte	1111 1111
0	1	1	0x03	Output Port 1	Read/write byte	1111 1111
1	0	0	0x04	Polarity Inversion Port 0	Read/write byte	0000 0000
1	0	1	0x05	Polarity Inversion Port 1	Read/write byte	0000 0000
1	1	0	0x06	Configuration Port 0	Read/write byte	1111 1111
1	1	1	0x07	Configuration Port 1	Read/write byte	1111 1111

SCPS254 - JANUARY 2014 www.ti.com

Register Descriptions

The Input Port registers (registers 0 and 1) reflect the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the Configuration register. It only acts on read operation. Writes to these registers have no effect. The default value, X, is determined by the externally applied logic level.

Before a read operation, a write transmission is sent with the command byte to indicate to the I²C device that the Input Port register will be accessed next.

Table 4. Registers 0 and 1 (Input Port Registers)

Bit	10.7	10.6	10.5	10.4	10.3	10.2	10.1	10.0
Default	Х	Х	Х	Х	Х	Х	Х	Х
Bit	I1.7	I1.6	I1.5	l1.4	I1.3	l1.2	I1.1	I1.0
Default	Х	Х	Х	Х	Х	Х	Х	Х

The Output Port registers (registers 2 and 3) show the outgoing logic levels of the pins defined as outputs by the Configuration register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value.

Table 5. Registers 2 and 3 (Output Port Registers)

Bit	00.7	O0.6	O0.5	00.4	00.3	00.2	00.1	00.0
Default	1	1	1	1	1	1	1	1
Bit	01.7	01.6	01.5	01.4	01.3	01.2	01.1	01.0
Default	1	1	1	1	1	1	1	1

The Polarity Inversion registers (registers 4 and 5) allow Polarity Inversion of pins defined as inputs by the Configuration register. If a bit in this register is set (written with 1), the corresponding port pin's polarity is inverted. If a bit in this register is cleared (written with a 0), the corresponding port pin's original polarity is retained.

Table 6. Registers 4 and 5 (Polarity Inversion Registers)

Bit	N0.7	N0.6	N0.5	N0.4	N0.3	N0.2	N0.1	N0.0
Default	0	0	0	0	0	0	0	0
Bit	N1.7	N1.6	N1.5	N1.4	N1.3	N1.2	N1.1	N1.0
Default	0	0	0	0	0	0	0	0

The Configuration registers (registers 6 and 7) configure the directions of the I/O pins. If a bit in this register is set to 1, the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in this register is cleared to 0, the corresponding port pin is enabled as an output.

Table 7. Registers 6 and 7 (Configuration Registers)

Bit	C0.7	C0.6	C0.5	C0.4	C0.3	C0.2	C0.1	C0.0
Default	1	1	1	1	1	1	1	1
Bit	C1.7	C1.6	C1.5	C1.4	C1.3	C1.2	C1.1	C1.0
Default	1	1	1	1	1	1	1	1

Power-On Reset

When power (from 0 V) is applied to V_{CC}, an internal power-on reset holds the TCA9539-Q1 in a reset condition until V_{CC} has reached V_{POR}. At that point, the reset condition is released and the TCA9539-Q1 registers and I²C/SMBus state machine initialize to their default states. After that, V_{CC} must be lowered to below 0.2 V and then back up to the operating voltage for a power-reset cycle.

Product Folder Links: TCA9539-Q1

RESET Input

A reset can be accomplished by holding the RESET pin low for <u>a minimum</u> of t_W . The TCA9539-Q1 registers and I^2 C/SMBus state machine are held in their default states until \overline{RESET} is once again high. This input requires a pullup resistor to V_{CC} , if no active connection is used.

Interrupt (INT) Output

An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time, t_{iv} , the signal \overline{INT} is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting or data is read from the port that generated the interrupt. Resetting occurs in the read mode at the acknowledge (ACK) bit or not acknowledge (NACK) bit after the falling edge of the SCL signal. Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as \overline{INT} .

Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur if the state of the pin does not match the contents of the Input Port register. Because each 8-bit port is read independently, the interrupt caused by port 0 is not cleared by a read of port 1, or vice versa.

INT has an open-drain structure and requires a pullup resistor to V_{CC}.

Bus Transactions

Data is exchanged between the master and TCA9539-Q1 through write and read commands.

Writes

Data is transmitted to the TCA9539-Q1 by sending the device address and setting the least-significant bit to a logic 0 (see Figure 5 for device address). The command byte is sent after the address and determines which register receives the data that follows the command byte.

The eight registers within the TCA9539-Q1 are configured to operate as four register pairs. The four pairs are Input Ports, Output Ports, Polarity Inversion ports, and Configuration ports. After sending data to one register, the next data byte is sent to the other register in the pair (see Figure 7 and Figure 8). For example, if the first byte is sent to Output Port 1 (register 3), the next byte is stored in Output Port 0 (register 2).

There is no limitation on the number of data bytes sent in one write transmission. In this way, each 8-bit register may be updated independently of the other registers.

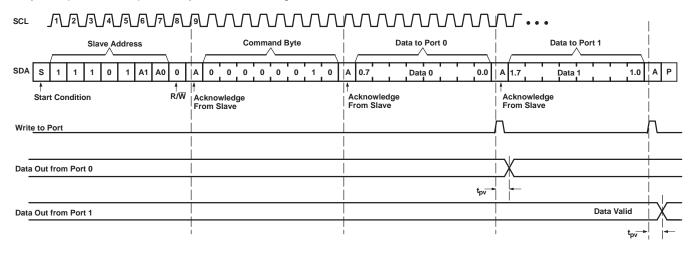


Figure 7. Write to Output Port Registers

)

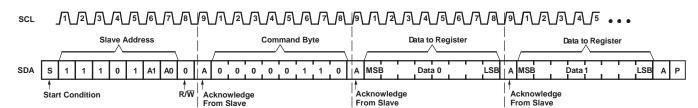


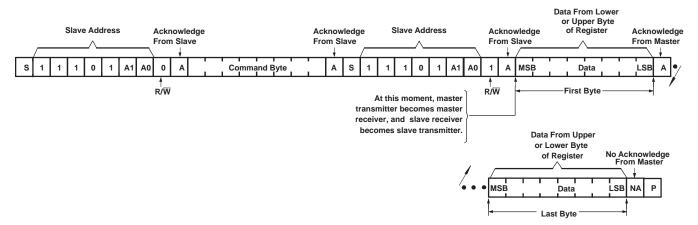
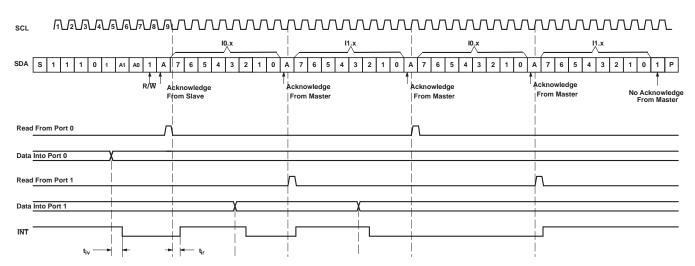
Figure 8. Write to Configuration Registers

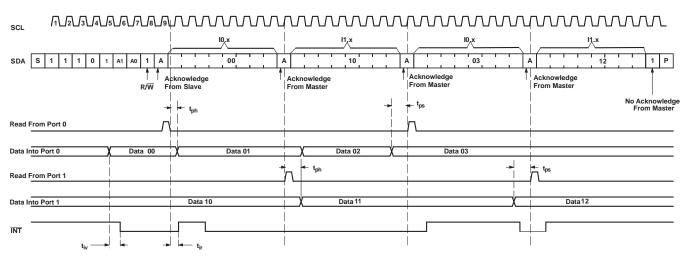
Reads

The bus master first must send the TCA9539-Q1 address with the least-significant bit set to a logic 0 (see Figure 5 for device address). The command byte is sent after the address and determines which register is accessed. After a restart, the device address is sent again, but this time, the least-significant bit is set to a logic 1. Data from the register defined by the command byte then is sent by the TCA9539-Q1 (see Figure 9 through Figure 11).

After a restart, the value of the register defined by the command byte matches the register being accessed when the restart occurred. For example, if the command byte references Input Port 1 before the restart, and the restart occurs when Input Port 0 is being read, the stored command byte changes to reference Input Port 0. The original command byte is forgotten. If a subsequent restart occurs, Input Port 0 is read first. Data is clocked into the register on the rising edge of the ACK clock pulse. After the first byte is read, additional bytes may be read, but the data now reflect the information in the other register in the pair. For example, if Input Port 1 is read, the next byte read is Input Port 0.

Data is clocked into the register on the rising edge of the ACK clock pulse. There is no limitation on the number of data bytes received in one read transmission, but when the final byte is received, the bus master must not acknowledge the data.


Figure 9. Read From Register

- A. Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It is assumed that the command byte previously has been set to 00 (Read Input Port register).
- B. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address call and actual data transfer from the P port (see Figure 9 for these details).

Figure 10. Read Input Port Register, Scenario 1

- A. Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It is assumed that the command byte previously has been set to 00 (Read Input Port register).
- B. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address call and actual data transfer from the P port (see Figure 9 for these details).

Figure 11. Read Input Port Register, Scenario 2

12 Submit

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6	V
V_{I}	Input voltage range (2)	Input voltage range (2)		6	V
Vo	Output voltage range ⁽²⁾		-0.5	6	V
I _{IK}	Input clamp current	V _I < 0		-20	mA
I _{OK}	Output clamp current	V _O < 0		-20	mA
I _{IOK}	Input/output clamp current	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
I _{OL}	Continuous output low current	$V_O = 0$ to V_{CC}		50	mA
I _{OH}	Continuous output high current	$V_O = 0$ to V_{CC}		-50	mA
-	Continuous current through GND			-250	A
I _{CC}	Continuous current through V _{CC}			-20 ±20 50 -50	mA
•	Declare the small importance in action to fine a sin(3)	PW package		88	
θ_{JA}	Package thermal impedance, junction to free air (3)	RTW package			°C/W
T _{stg}	Storage temperature range	•	-65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
- The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions

IN MAX	UNIT
65 5.5	5 V
CC 5.5	5 V
CC 5.5	
0.5 0.3 × V _C	c v
.5 0.3 × V _C	
-10) mA
25	5 mA
40 12	5 °C
	-0.5 $0.3 \times V_{CO}$ -10 25 -40 125

Product Folder Links: TCA9539-Q1

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	Input diode clamp voltage	I _I = -18 mA	1.65 V to 5.5 V	-1.2			V
V _{POR}	Power-on reset voltage	$V_I = V_{CC}$ or GND, $I_O = 0$	1.65 V to 5.5 V		1.5	1.65	V
			1.65 V	1.2			
		1 0 m A	2.3 V	1.8			
		$I_{OH} = -8 \text{ mA}$	3 V	2.6			
.,	D = == t t t t t t t t t		4.75 V	4.1			V
V_{OH}	P-port high-level output voltage (2)		1.65 V	1.8			V
			2.3 V	1.7			
		$I_{OH} = -10 \text{ mA}$	3 V	2.5			
			4.75 V	4			
	SDA	V _{OL} = 0.4 V		3			
	D = ==(3)	V _{OL} = 0.5 V	4.05.7/1- 5.5.7/	8	20		mA
l _{OL}	P port ⁽³⁾	V _{OL} = 0.7 V	1.65 V to 5.5 V	10	24		
	ĪNT	V _{OL} = 0.4 V		3			
	SCL, SDA	V V OND	4.05.1/4. 5.5.1/			±1	
lı	A0, A1, RESET	$V_I = V_{CC}$ or GND	1.65 V to 5.5 V			±1	μΑ
I _{IH}	P port	$V_{I} = V_{CC}$	1.65 V to 5.5 V			1	μA
I _{IL}	P port	V _I = GND	1.65 V to 5.5 V			-1	μA
			5.5 V		100	200	
	On another many de	$V_I = V_{CC}$ or GND, $I_O = 0$,	3.6 V		30	75	
	Operating mode	$I/O = inputs, f_{SCL} = 400 \text{ kHz}$	2.7 V		20	50	
			1.95 V		10	45	
I _{CC}			5.5 V		1.1	1.5	μΑ
	0. "	$V_I = GND$, $I_O = 0$, $I/O = inputs$,	3.6 V		0.7	1.3	Ī
	Standby mode	f _{SCL} = 0 kHz	2.7 V		0.5	1	
			1.95 V		0.3	0.9	
ΔI _{CC}	Additional current in standby mode	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	1.65 V to 5.5 V			200	μΑ
Ci	SCL	V _I = V _{CC} or GND	1.65 V to 5.5 V		3	7	pF
	SDA		4.05.7/1- 5.5.7/		3	7	
C_{io}	P port	$V_{IO} = V_{CC}$ or GND	1.65 V to 5.5 V		3.7	9.5	pF
	1 port						

⁽¹⁾ All typical values are at nominal supply voltage (1.8-V, 2.5-V, 3.3-V, or 5-V V_{CC}) and T_A = 25°C.

Each I/O must be externally limited to a maximum of 25 mA, and each octal (P07-P00 and P17-P10) must be limited to a maximum current of 100 mA, for a device total of 200 mA.

The total current sourced by all I/Os must be limited to 160 mA (80 mA for P07-P00 and 80 mA for P17-P10).

I²C Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 12)

			MIN	MAX	UNIT
f _{scl}	I ² C clock frequency		0	400	kHz
t _{sch}	I ² C clock high time		0.6		μs
t _{scl}	I ² C clock low time		1.3		μs
t _{sp}	I ² C spike time			50	ns
t _{sds}	I ² C serial-data setup time		100		ns
t _{sdh}	I ² C serial-data hold time		0		ns
t _{icr}	I ² C input rise time		20 + 0.1C _b ⁽¹⁾	300	ns
t _{icf}	I ² C input fall time		20 + 0.1C _b ⁽¹⁾	300	ns
t _{ocf}	I ² C output fall time	10-pF to 400-pF bus	20 + 0.1C _b ⁽¹⁾	300	ns
t _{buf}	I ² C bus free time between Stop and	Start	1.3		μs
t _{sts}	I ² C Start or repeated Start condition	setup	0.6		μs
t _{sth}	I ² C Start or repeated Start condition	hold	0.6		μs
t _{sps}	I ² C Stop condition setup		0.6		μs
t _{vd(data)}	Valid-data time	SCL low to SDA output valid	50		ns
t _{vd(ack)}	Valid-data time of ACK condition	ACK signal from SCL low to SDA (out) low	0.1	0.9	μs
C _b	I ² C bus capacitive load			400	pF

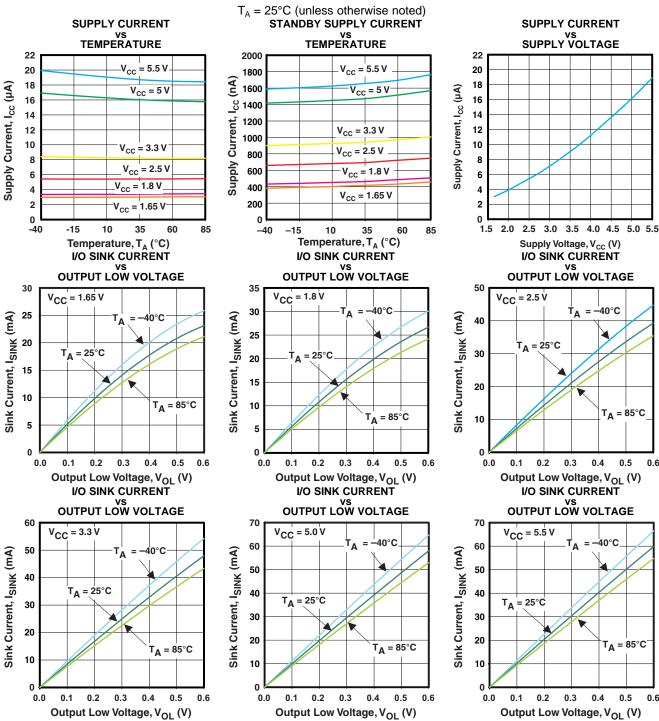
⁽¹⁾ $C_b = total$ capacitance of one bus line in pF

RESET Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 15)

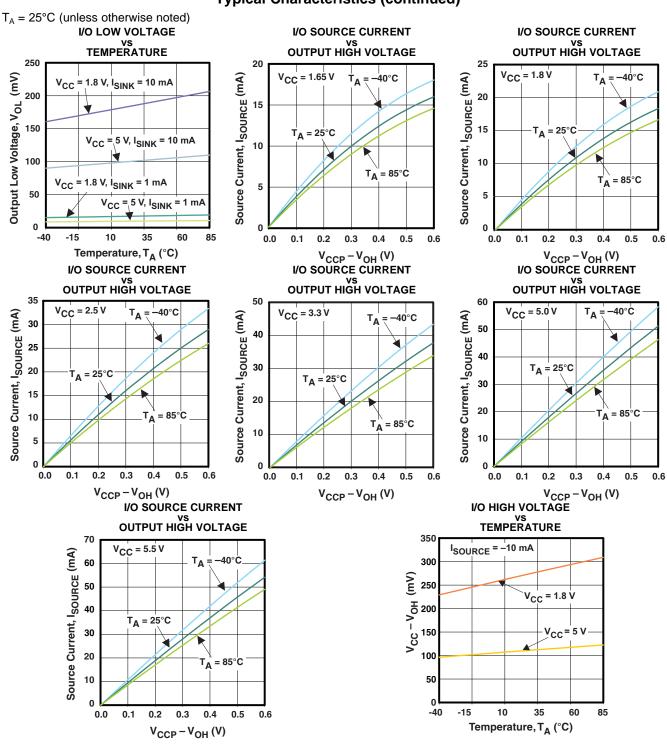
		MIN	MAX	UNIT
t _W	Reset pulse duration	6		ns
t _{REC}	Reset recovery time	0		ns
t _{RESET}	Time to reset	400		ns

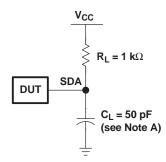
Switching Characteristics


over recommended operating free-air temperature range, C_L ≤ 100 pF (unless otherwise noted) (see Figure 13 and Figure 14)

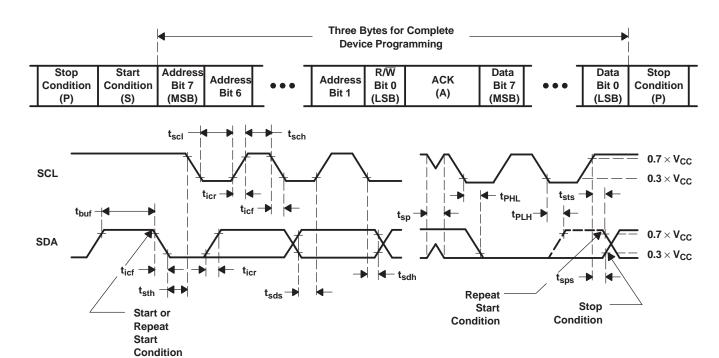
	PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN MAX	UNIT
t_{iv}	Interrupt valid time	P port	ĪNT		4 μs
t _{ir}	Interrupt reset delay time	SCL	ĪNT		4 μs
t _{pv}	Output data valid	SCL	P port	200) ns
t _{ps}	Input data setup time	P port	SCL	150	ns
t _{ph}	Input data hold time	P port	SCL	1	μs

Product Folder Links: TCA9539-Q1





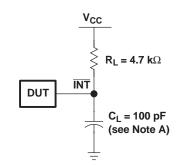
Typical Characteristics (continued)



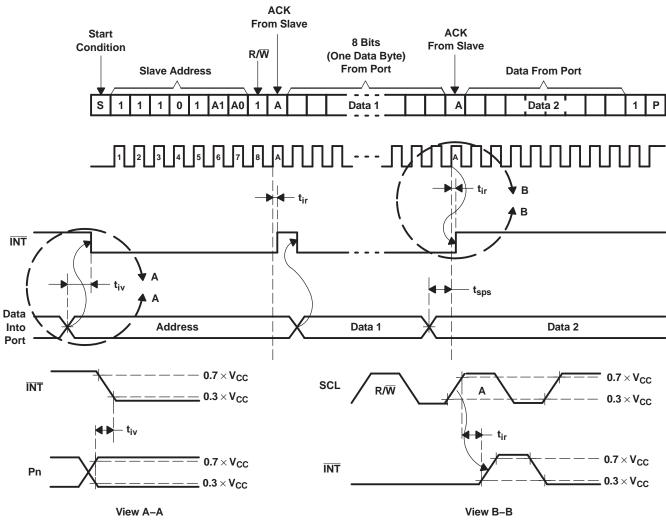
Parameter Measurement Information

SDA LOAD CONFIGURATION

VOLTAGE WAVEFORMS

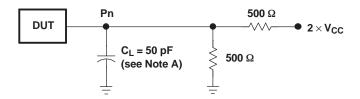

BYTE	DESCRIPTION
1	I ² C address
2, 3	P-port data

- A. C_L includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50~\Omega$, $t_r/t_f \leq$ 30 ns.
- C. All parameters and waveforms are not applicable to all devices.

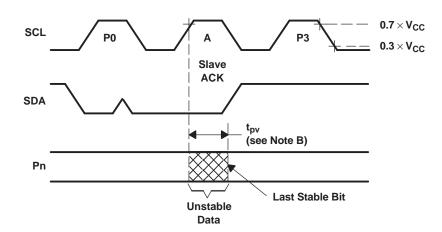

Figure 12. I²C Interface Load Circuit and Voltage Waveforms

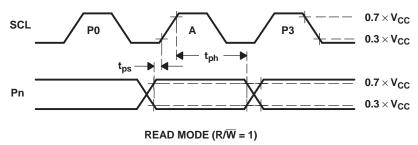
Parameter Measurement Information (continued)

INTERRUPT LOAD CONFIGURATION



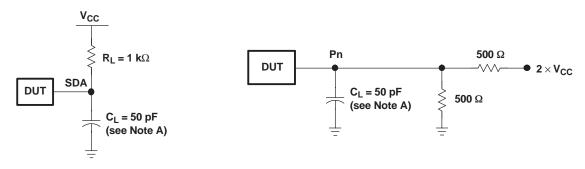
- A. C_L includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r/t_f \leq$ 30 ns.
- C. All parameters and waveforms are not applicable to all devices.


Figure 13. Interrupt Load Circuit and Voltage Waveforms


Parameter Measurement Information (continued)

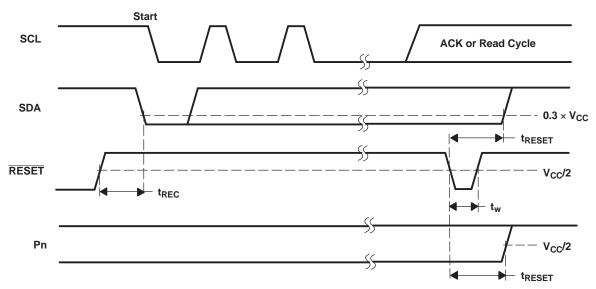
P-PORT LOAD CONFIGURATION

WRITE MODE $(R/\overline{W} = 0)$



- A. C_L includes probe and jig capacitance.
- B. t_{pv} is measured from 0.7 x V_{CC} on SCL to 50% I/O (Pn) output.
- C. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r/t_f \leq$ 30 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 14. P-Port Load Circuit and Voltage Waveforms



Parameter Measurement Information (continued)

SDA LOAD CONFIGURATION

P-PORT LOAD CONFIGURATION

- A. C_L includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r/t_f \leq$ 30 ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. I/Os are configured as inputs.
- E. All parameters and waveforms are not applicable to all devices.

Figure 15. Reset Load Circuits and Voltage Waveforms

TEXAS INSTRUMENTS

APPLICATION INFORMATION

Figure 16 shows an application in which the TCA9539-Q1 can be used.

- A. Device address is configured as 1110100 for this example.
- B. P00, P02, and P03 are configured as outputs.
- C. P01 and P04 to P17 are configured as inputs.
- D. Pin numbers shown are for the PW package.

Figure 16. Typical Application

22

Product Folder Links: TCA9539-Q1

Minimizing I_{CC} When I/O Is Used to Control LED

When an I/O is used to control an LED, normally it is connected to V_{CC} through a resistor (see Figure 16). Because the LED acts as a diode, when the LED is off, the I/O V_{IN} is about 1.2 V less than V_{CC} . The ΔI_{CC} parameter in Electrical Characteristics shows how I_{CC} increases as V_{IN} becomes lower than V_{CC} . For battery-powered applications, it is essential that the voltage of I/O pins is greater than or equal to V_{CC} , when the LED is off, to minimize current consumption.

Figure 17 shows a high-value resistor in parallel with the LED. Figure 18 shows V_{CC} less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_{CC} at or above V_{CC} and prevent additional supply-current consumption when the LED is off.

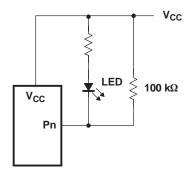


Figure 17. High-Value Resistor in Parallel With LED

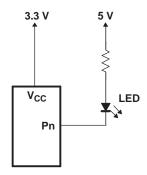


Figure 18. Device Supplied by Lower Voltage

Power-On Reset Requirements

In the event of a glitch or data corruption, TCA9539-Q1 can be reset to its default conditions by using the poweron reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

The two types of power-on reset are shown in Figure 19 and Figure 20.

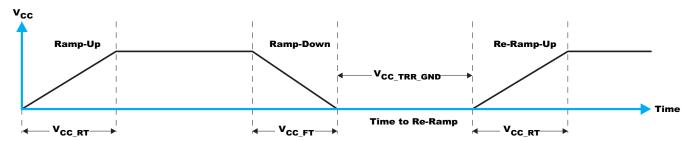


Figure 19. V_{CC} is Lowered Below 0.2 V or 0 V and Then Ramped Up to V_{CC}

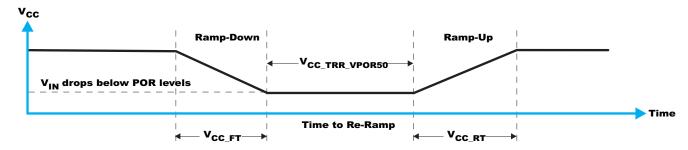


Figure 20. V_{CC} is Lowered Below the POR Threshold, Then Ramped Back Up to V_{CC}

Table 8 specifies the performance of the power-on reset feature for TCA9539-Q1 for both types of power-on reset.

	MIN	TYP	MAX	UNIT		
V _{CC_FT}	Fall rate	See Figure 19	0.1		2000	ms
V _{CC_RT}	Rise rate	See Figure 19	0.1		2000	ms
V _{CC_TRR_GND}	Time to re-ramp (when V _{CC} drops to GND)	See Figure 19	1			μs
V _{CC_TRR_POR50}	Time to re-ramp (when V_{CC} drops to $V_{POR_MIN} - 50$ mV)	See Figure 20	1			μs
V _{CC_GH}	Level that V_{CCP} can glitch down to, but not cause a functional disruption when V_{CCX_GW} = 1 μs	See Figure 21			1.2	V
V _{CC_GW}	Glitch width that will not cause a functional disruption when $V_{CCX_GH} = 0.5 \times V_{CCx}$	See Figure 21			10	μs
V _{PORF}	Voltage trip point of POR on falling V _{CC}		0.7			V
V _{PORR}	Voltage trip point of POR on fising V _{CC}				1.4	V

(1) $T_A = -40$ °C to 125°C (unless otherwise noted)

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width (V_{CC_GW}) and height (V_{CC_GH}) are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. Figure 21 and Table 8 provide more information on how to measure these specifications.

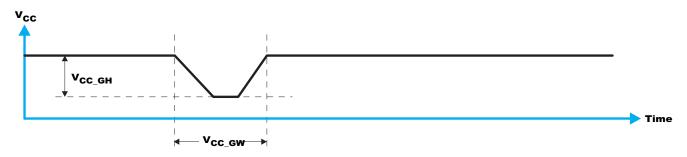
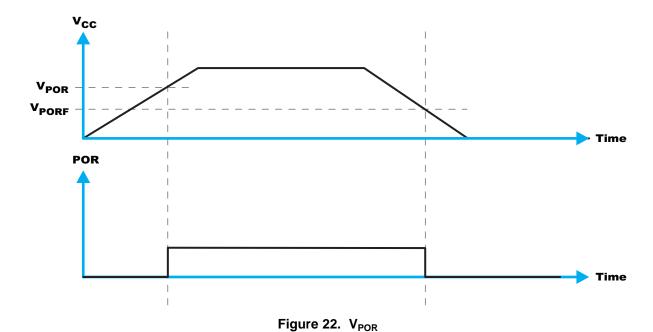



Figure 21. Glitch Width and Glitch Height

 V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the V_{CC} being lowered to or from 0. Figure 22 and Table 8 provide more details on this specification.

PACKAGE OPTION ADDENDUM

18-Jan-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TCA9539QPWRQ1	PREVIEW	TSSOP	PW	24	2000	TBD	Call TI	Call TI			

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

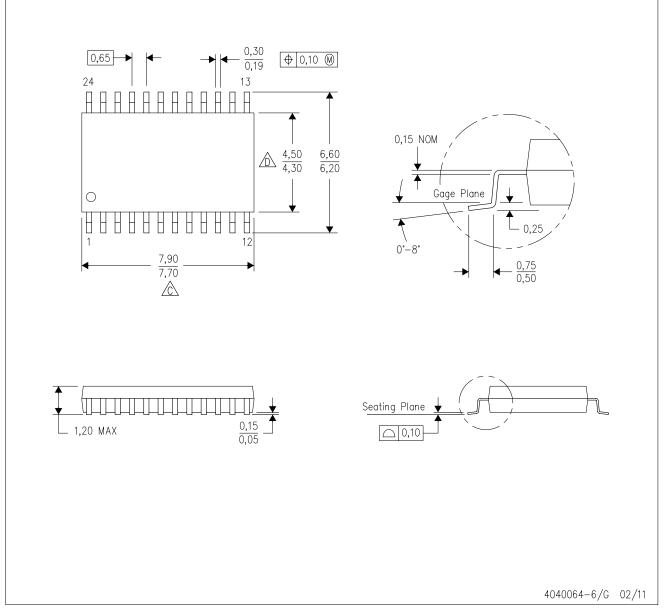
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

18-Jan-2014


OTHER QUALIFIED VERSIONS OF TCA9539-Q1:

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

power.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Power Mgmt

OMAP Applications Processors www.ti.com/omap **TI E2E Community** e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity